Using the COMPUTE Block in PROC REPORT

Jack Hamilton, Kaiser Foundation Health Plan, Oakland, California

ABSTRACT

COMPUTE blocks add a great deal of power to PROC REPORT by allowing programmatic changes to be made for each individual data cell. This paper will describe the basics of PROC REPORT, and show how COMPUTE blocks may be used to tailor the contents and formatting of the output.

A completed version of this paper will be available after WUSS at

http://www.excursive.com/sas/

The expanded paper will contain more details on the inner workings of PROC REPORT, along with whatever I add as a result of suggestions at WUSS.

INTRODUCTION

This paper is intended to acquaint you with the basics of PROC REPORT, and in particular with some of the things you can do using compute blocks.

PROC REPORT combines features of PROC PRINT, PROC SUMMARY, PROC SORT, and the data step – it can sort and summarize data and perform calculations.

You can't do anything with PROC REPORT that you can't do with a combination of PROC SUMMARY, PROC SORT, and data steps, but PROC REPORT may be much easier to use. It particularly excels in two areas: the display of relational (or "normalized") data, and control of appearance through ODS.

This paper is a tutorial; rather than giving detailed instructions about each statement and option in PROC REPORT, I will present working examples of features you might want to use.

A SAMPLE DATA SET

In this paper I will use a subset of the SASHELP.PRDSALE data set which ships with SAS. It has a reduced number of variables and a much smaller number of observations.

There are several system options I like to use by default:

```
options msglevel=i errorcheck=strict nocenter;
```

I also use some settings which make it easier to include results in the paper:

```
options ls=80 ps=40;
options nodate nonumber;
options formchar="|----|+|---+=|-/<>*";
```

To create the sample data set, I use PROC SQL, selecting only 1 out of every 75 observations:

```
from sashelp.prdsale
where mod(monotonic(), 75) = 0
order by ranuni(94612);
quit;
```

Printing the output (with an old-fashioned PROC PRINT) shows us what the data set looks like:

title 'PROC PRINT';
<pre>proc print data=smallprod;</pre>
run;

prints:

PROC	PROC PRINT							
Obs	COUNTRY	REGION	PRODTYPE	PRODUCT	ACTUAL	PREDICT	MONTH	
1	CANADA	EAST	FURNITURE	BED	983.00	851.00	Jun	
2	GERMANY	EAST	OFFICE	CHAIR	197.00	747.00	Mar	
3	U.S.A.	EAST	OFFICE	DESK	415.00	763.00	Dec	
4	CANADA	EAST	OFFICE	DESK	234.00	452.00	Sep	
5	CANADA	WEST	OFFICE	TABLE	778.00	231.00	Dec	
6	CANADA	WEST	OFFICE	CHAIR	838.00	98.00	Jun	
7	U.S.A.	EAST	FURNITURE	SOFA	662.00	566.00	Mar	
8	GERMANY	EAST	FURNITURE	BED	770.00	110.00	Sep	
9	U.S.A.	WEST	OFFICE	CHAIR	425.00	296.00	Mar	
10	GERMANY	WEST	OFFICE	DESK	875.00	890.00	Sep	
11	GERMANY	EAST	OFFICE	DESK	625.00	953.00	Dec	
12	GERMANY	WEST	OFFICE	TABLE	881.00	817.00	Dec	
13	U.S.A.	EAST	OFFICE	CHAIR	862.00	21.00	Jun	
14	U.S.A.	WEST	FURNITURE	BED	550.00	369.00	Jun	
15	CANADA	WEST	FURNITURE	SOFA	142.00	583.00	Mar	
16	U.S.A.	WEST	OFFICE	DESK	655.00	912.00	Sep	
17	CANADA	EAST	OFFICE	CHAIR	670.00	679.00	Mar	
18	U.S.A.	EAST	FURNITURE	BED	153.00	37.00	Sep	
19	GERMANY	WEST	FURNITURE	BED	468.00	576.00	Jun	

The remaining examples in this paper will not show all of the detail lines unless they are necessary to express a point.

If we run PROC REPORT with virtually no options, we'll get similar (but not identical) output:

title 'Plain PROC REPORT'; proc report data=smallprod nowindows missing; run;									
Plain PROC H	Plain PROC REPORT								
		Product				Mon			
Country	Region	type	Product	ACTUAL	PREDICT	th			
CANADA	EAST	FURNITURE	BED	983.00	851.00	Jun			
GERMANY	EAST	OFFICE	CHAIR	197.00	747.00	Mar			
U.S.A.	EAST	OFFICE	DESK	415.00	763.00	Dec			
<lines deleted=""></lines>									
GERMANY	WEST	FURNITURE	BED	468.00	576.00	Jun			

There's no OBS column, labels are used instead of variable names, and the Month label is split, but otherwise they're pretty similar.

SOME BASIC OPTIONS

There are some basic options I almost always use with PROC REPORT: NOWINDOWS, MISSING, HEADLINE, and HEADSKIP.

NOWINDOWS tells PROC REPORT not to go into interactive mode. This applies only if you're running SAS interactively. It doesn't hurt to specify it in batch.

MISSING is similar to the MISSING option in PROC SUMMARY, PROC MEANS, PROC TABULATE, and PROC FREQ. It tells SAS not to silently delete observations with missing values in their classification variables. For some reason, statisticians seem to think this is OK, but it's almost never appropriate for business or personal use – your numbers won't add up right. So always use the MISSING option, just in case your data have missing values. It's a good habit to get into.

HEADLINE tells PROC REPORT to print an underline below the column headers. HEADSKIP tells PROC REPORT to skip a line after the header. As we'll see later, there's another way to achieve this effect, this but is the easy way.

```
proc report data=smallprod
nowindows missing headline headskip;
run;
```

prints:

Country	Region	Product type	Product	ACTUAL	PREDICT	Mon th	
CANADA	EAST	FURNITURE	BED	983.00	851.00	Jun	
GERMANY	EAST	OFFICE	CHAIR	197.00	747.00	Mar	
U.S.A.	EAST	OFFICE	DESK	415.00	763.00	Dec	
<lines deleted=""></lines>							
GERMANY	WEST	FURNITURE	BED	468.00	576.00	Jun	

THE COLUMN STATEMENT

The COLUMN statement is used to tell PROC REPORT which variables you want to print, and in what order. It's similar to the VAR statement in PROC PRINT.

prints:

Country	Pogion	Product	Mon + b	DREDICT	λοτιλι	
~~~~~~			_	0.51.00		
CANADA	EAST	BED	Jun	851.00	983.00	
GERMANY	EAST	CHAIR	Mar	747.00	197.00	
U.S.A.	EAST	DESK	Dec	763.00	415.00	
<li><li><li><li></li></li></li></li>						
GERMANY	WEST	BED	Jun	576.00	468.00	

#### THE DEFINE STATEMENT – ORDER

You tell PROC REPORT how to handle specific columns using the DEFINE statement. It has a number of options; one commonly used option is ORDER, which tells PROC REPORT to sort the data:

# proc report data=smallprod

nowindows missing headline headskip; column country region product month predict actual; define country / order; define region / order; run;

			Mon				
Country	Region	Product	th	PREDICT	ACTUAL		
CANADA	EAST	BED	สมา	851.00	983.00		
0111111111	21101	DESK	Sep	452.00	234.00		
		CHAIR	Mar	679.00	670.00		
	WEST	TABLE	Dec	231.00	778.00		
		CHAIR	Jun	98.00	838.00		
		SOFA	Mar	583.00	142.00		
GERMANY	EAST	CHAIR	Mar	747.00	197.00		
<lines deleted=""></lines>							

As you can see, it's possible to order by more than one column. Columns are ordered by their appearance in the COLUMN statement, not by the physical order of the DEFINE statements.

# THE DEFINE STATEMENT – GROUP

The GROUP option on the DEFINE statement tells PROC REPORT that you want to create a SUMMARY report rather than a detail report, summarizing by the variables with DEFINE / ORDER:

prints:

			Mon		
Country	Region	Product	th	PREDICT	ACTUAL
CANADA	EAST	BED	Jun	851.00	983.00
		DESK	Sep	452.00	234.00
		CHAIR	Mar	679.00	670.00
	WEST	TABLE	Dec	231.00	778.00
		CHAIR	Jun	98.00	838.00
		SOFA	Mar	583.00	142.00
GERMANY	EAST	CHAIR	Mar	747.00	197.00
<lines delet<="" td=""><td>TED&gt;</td><td></td><td></td><td></td><td></td></lines>	TED>				

But wait! That looks just like the previous output? What happened?

If you look in the log, you'll see these lines:

NOTE: Groups are not created because the usage of PRODUCT is DISPLAY.

What that's telling you is the product variable might have multiple values within each group. Since PROC REPORT has no way of knowing what you want displayed, it just gives up and doesn't group at all.

When this happens, you probably want to delete the problematic column:

prints:

Country	Region	PREDICT	ACTUAL
~~~~~		1 000 00	1 005 00
CANADA	EAST	1,982.00	1,887.00
	WEST	912.00	1,758.00
GERMANY	EAST	1,810.00	1,592.00
	WEST	2,283.00	2,224.00
U.S.A.	EAST	1,387.00	2,092.00
	WEST	1,577.00	1,630.00

FORMATTED GROUPS

You can also apply a format to a grouped variable, and the report will be sorted and grouped by the formatted value rather than the internal value:

prints:

 Country	Region	PREDICT	ACTUAL
EU	EAST	1,810.00	1,592.00
	WEST	2,283.00	2,224.00
NA	EAST	3,369.00	3,979.00
	WEST	2,489.00	3,388.00

OTHER STATISTICS

The most common statistic is probably SUM, but other statistics (MEAN, STD, MIN, MAX, and so forth) are also available and can be specified in the DEFINE statement (only one at a time):

proc report data=smallprod

nowindows missing headline headskip; column country region predict actual; define country / group; define region / group; define predict / mean; define actual / mean; run;

Country	Region	PREDICT	ACTUAL
CANADA	EAST	660.67	629.00
	WEST	304.00	586.00
GERMANY	EAST	603.33	530.67
	WEST	761.00	741.33
U.S.A.	EAST	346.75	523.00
	WEST	525.67	543.33

REPORT LEVEL SUMMARIES

You can use the RBREAK statement to create a summary line at the bottom of the report:

proc report data=smallprod
nowindows missing headline;
column country region predict actual;
define country / group;
define region / group;
rbreak after / summarize skip ol;
run;

prints:

Country	Region	PREDICT	ACTUAL
CANADA	EAST WEST	1,982.00	1,887.00
GERMANY	EAST	1,810.00	1,592.00
U.S.A.	EAST WEST	1,387.00	2,092.00
	_	9,951.00	11,183.00

You can also use RBREAK BEFORE to print a summary at the beginning of the report, but this is less common.

GROUP LEVEL SUMMARIES

You can use the BREAK statement to create a summary after (or before) each summary level you have defined with GROUP options:

prints:

Country	Region	PREDICT	ACTUAL
CANADA	EAST WEST	1,982.00 912.00	1,887.00 1,758.00
CANADA	_	2.894.00	3.645.00
CHINIDH		2,091.00	3,013.00
GERMANY	EAST	1,810.00	1,592.00
	- WEST	2,283.00	2,224.00
GERMANY		4,093.00	3,816.00
U.S.A.	EAST	1,387.00	2,092.00
	WEST	1,577.00	1,630.00
U.S.A.	_	2,964.00	3,722.00

You can, of course, combine both BREAK and RBREAK:

prints:

Country	Region	PREDICT	ACTUAL
CANADA	EAST	1,982.00	1,887.00
	WESI	912.00	1,/58.00
CANADA		2,894.00	3,645.00
GERMANY	EAST	1,810.00	1,592.00
	WEST	2,283.00	2,224.00
GERMANY		4,093.00	3,816.00
U.S.A.	EAST	1,387.00	2,092.00
	WEST	1,577.00	1,630.00
U.S.A.		2,964.00	3,722.00
		9,951.00	11,183.00

ACROSS VARIABLES

Often, you want print values data values across the page, in columns, rather than down the page, in rows. The ACROSS option allows you to do this:

prints:

		Region			
Country	EAST	WEST		PREDICT	ACTUAL
~~~~~		2	~		0 645 00
CANADA		3	3	2,894.00	3,645.00
GERMANY		3	3	4,093.00	3,816.00
U.S.A.		4	3	2,964.00	3,722.00
	1	0	9	9,951.00	11,183.00

The default statistic is N, the number of observations; in this case, the regions total to 19. If you want to calculate statistics for another column, use the COMMA operator:

prints:

	Regi	on		
Country	EAST	WEST	ACTILAT	
	FREDICI	FREDICI	ACIUAL	
	1 000 00	012 00	2 645 00	
CANADA	1,982.00	912.00	3,645.00	
GERMANY	1,810.00	2,283.00	3,816.00	
U.S.A.	1,387.00	1,577.00	3,722.00	
	5,179.00	4,772.00	11,183.00	

You can use parentheses for grouping to get several statistics for one across group:

prints:

		Regi	.on	
	EAS	ST	WE:	ST
Country	PREDICT	ACTUAL	PREDICT	ACTUAL
CANADA	1,982.00	1,887.00	912.00	1,758.00
GERMANY	1,810.00	1,592.00	2,283.00	2,224.00
U.S.A.	1,387.00	2,092.00	1,577.00	1,630.00
	5,179.00	5,571.00	4,772.00	5,612.00

You can also put across groups side by side:

	Regi	on	Product	type
	EAST	WEST	FURNITURE	OFFICE
Country	PREDICT	PREDICT	PREDICT	PREDICT
CANADA	1,982.00	912.00	1,434.00	1,460.00
GERMANY	1,810.00	2,283.00	686.00	3,407.00
U.S.A.	1,387.00	1,577.00	972.00	1,992.00
	5,179.00	4,772.00	3,092.00	6,859.00

# Or nest them:

proc report data=smallprod
nowindows missing headline headskip;
column country (region , prodtype) , (predict);
define country / group;
define region / across;
define prodtype / across;
rbreak after / summarize skip ol;
run;

prints:

		Reg	ion	
	EAST	с Г	WES	Т
	Product	type	Product	type
	FURNITURE	OFFICE	FURNITURE	OFFICE
Country	PREDICT	PREDICT	PREDICT	PREDICT
	0.51.00	1 101 00	500.00	
CANADA	851.00	1,131.00	583.00	329.00
GERMANY	110.00	1,700.00	576.00	1,707.00
U.S.A.	603.00	784.00	369.00	1,208.00
	1,564.00	3,615.00	1,528.00	3,244.00

## **HEADER OPTIONS**

At this point, there's a lot of text on the page, and it might be useful to draw some lines to help show the groupings:

	===========	===== Gro	ups ========	
			Produ	ict
	Regi	on	Тур	e
	EAST	WEST	FURNITURE	OFFICE
Country	PREDICT	PREDICT	PREDICT	PREDICT
CANADA	 1.982.00	912.00	1.434.00	1.460.00
GERMANY	1,810.00	2,283.00	686.00	3,407.00
U.S.A.	1,387.00	1,577.00	972.00	1,992.00

5,179.00	4,772.00	3,092.00	6,859.00

### **COLUMN ALIASES**

Column Aliases allow you to use a data set variable for more than one purpose:

prints:

Country	Predict	Predict	Actual	Actual
	Total	Mean	Total	Mean
CANADA	2,894.00	482.33	3,645.00	607.50
GERMANY	4,093.00	682.17	3,816.00	636.00
U.S.A.	2,964.00	423.43	3,722.00	531.71
	9,951.00	523.74	11,183.00	588.58

You can combine aliases and across variables to obtain subtotal columns plus a total column:

prints:

Region									
	EAST	WEST	Total						
Country	ACTUAL	ACTUAL	Actual						
CANADA	1,887.00	1,758.00	3,645.00						
GERMANY	1,592.00	2,224.00	3,816.00						
U.S.A.	2,092.00	1,630.00	3,722.00						
	5,571.00	5,612.00	11,183.00						

### FORMATTED OUTPUT

You can use the STYLE option to apply styles to ODS destinations:

prints:

		Reg	ion	
	EA	ST	WE	ST
Country	PREDICT	ACTUAL	PREDICT	ACTUAL
CANADA	1,982.00	1,887.00	912.00	1,758.00
GERMANY	1,810.00	1,592.00	2,283.00	2,224.00
U.S.A.	1,387.00	2,092.00	1,577.00	1,630.00
	5,179.00	5,571.00	4,772.00	5,612.00

This and the remaining styled reports use the HTML destination with the built-in style sasdocPrinter.

### **COMPUTED COLUMNS**

Well, finally, I hear you saying.

Computed columns allow you to calculate the value of a column using a subset of the data step language. You specify the COMPUTED option on the DEFINE statement to tell PROC REPORT that you are using a computed column, and code a COMPUTE ... ENDCOMP block (known as a compute block) to calculate the value of the variable:

proc report data=smallprod
nowindows missing headline headskip pspace=1;
column country region product month predict actual diff;
define country / order;
define region / order;
define month / order 'Mon' order=internal;
define predict / display;
define actual / display;
define diff / computed format=comma10.2;
compute diff;
diff = actual - predict;
endcomp;
run;

prints:

	Country	Region	Product	Mon	PREDICT	ACTUAL	diff
	CANADA	EAST	CHAIR BED DESK	Mar Jun Sep	679.00 851.00 452.00	670.00 983.00 234.00	-9.00 132.00 -218.00
<1	LINES DELETE	D>		±	-	-	

There's a very important restriction on variables in compute blocks: You can only use variables to the left of the current column in your calculations (you can assign a value to a variable to the right, but you can't read it).

Another important restriction is that unqualified columns must have usage DISPLAY. Here's what happens when you try to perform calculations on a numeric column with the default usage of ANALYSIS:

#### The log shows

```
NOTE: Variable predict is uninitialized.
NOTE: Variable actual is uninitialized.
NOTE: Variable predict is uninitialized.
NOTE: Variable actual is uninitialized.
NOTE: There were 19 observations read from the data set WORK.SMALLPROD.
```

#### And the DIFF column always contains 0.

If you want to perform calculations on an analysis variable, you must qualify the name with the name of a statistic:

#### prints:

Country	Region	Product	th	PREDICT	ACTUAL	diff
CANADA	EAST	BED	Jun	851.00	983.00	132.00
		DESK	Sep	452.00	234.00	-218.00
		CHAIR	Mar	679.00	670.00	-9.00
	WEST	TABLE	Dec	231.00	778.00	547.00
		CHAIR	Jun	98.00	838.00	740.00
		SOFA	Mar	583.00	142.00	-441.00
CANADA			Sep	2,894.00	3,645.00	751.00

# PRINTING AN OBSERVATION NUMBER

Printing something like an observation number is an obvious thing for a long-time SAS user to want to do, and there's an obvious approach:

but unfortunately it prints:

					Mon	
	Obs	Country	Region	Product	th	PREDICT
	1	CANADA	EAST	BED	Jun	851.00
	1			DESK	Sep	452.00
	1			CHAIR	Mar	679.00
<lines i<="" td=""><td>DELEI</td><td>'ED&gt;</td><td></td><td></td><td></td><td></td></lines>	DELEI	'ED>				

What happened?

It's a bit of a gotcha. PROC REPORT behaves a bit like the data step in that report variables (those listed in the COLUMN statement) are automatically reset to missing at the beginning of each observation. So Obs is always reset to missing, 1 is added, and the result is missing.

The workaround is to use a variable that's not named in the COLUMN statement to hold the value across observations. Such variables are retained by not reset:

prints:

				Mon	
Obs	Country	Region	Product	th	PREDICT
1	CANADA	EAST	BED	Jun	851.00
2			DESK	Sep	452.00
3			CHAIR	Mar	679.00
<lines dele<="" td=""><td>TED&gt;</td><td></td><td></td><td></td><td></td></lines>	TED>				

# CREATING AN OUTPUT DATA SET

You can use the OUT= option on the PROC REPORT statement to create an output data set. The data set will have a variable for each column in the COLUMN statement, plus a special variable named _BREAK_:

run;

#### prints:

Obs	COUNTRY	REGION	PREDICT	ACTUAL	_BREAK_	
1	CANADA	EAST	1,982.00	1,887.00		
2	CANADA	WEST	912.00	1,758.00		
3	CANADA		2,894.00	3,645.00	COUNTRY	
4	GERMANY	EAST	1,810.00	1,592.00		
5	GERMANY	WEST	2,283.00	2,224.00		
6	GERMANY		4,093.00	3,816.00	COUNTRY	
7	U.S.A.	EAST	1,387.00	2,092.00		
8	U.S.A.	WEST	1,577.00	1,630.00		
9	U.S.A.		2,964.00	3,722.00	COUNTRY	
10			9,951.00	11,183.00	_RBREAK_	

# USING THE _BREAK_ VARIABLE TO CHANGE SUMMARY LINES

The _BREAK_ variable is also available in COMPUTE blocks; you can use it to decide when to change the value of other variables (even though it appears to the right of all other variables in the output data set). Suppose you don't like the default text for summary lines; you can change it:

```
proc report data=smallprod nowindows missing headline;
    column country region predict actual;
    define country / group;
    define region / group;
    break after country / summarize skip ol;
    rbreak after / summarize skip dol;
    compute country;
        if _break_ = 'COUNTRY' then
            country = 'Subtotal';
        else if _break_ = '_RBREAK_' then
            country = 'GrandTotal';
    endcomp;
run;
```

Country	Region	PREDICT	ACTUAL
CANADA	EAST WEST	1,982.00 912.00	1,887.00 1,758.00
Subtotal	_	2,894.00	3,645.00
GERMANY	EAST WEST	1,810.00 2,283.00	1,592.00 2,224.00
Subtotal	_	4,093.00	3,816.00
U.S.A.	EAST WEST	1,387.00 1,577.00	2,092.00 1,630.00
Subtotal	_	2,964.00	3,722.00

==========	=========	========	
GrandTotal	9,951.00	11,183.00	

### **COMPUTING A RATIO**

Suppose you want to compute the ratio between two summarized variables. You can do that by specifying the variable and statistic in the compute block:

```
proc report data=smallprod nowindows missing headline;
    column country region predict actual ratio;
    define country / group;
    define region / group;
    define ratio / computed format=6.2;
    break after country / summarize skip ol;
    rbreak after / summarize skip dol;
    compute ratio;
        ratio = actual.sum / predict.sum;
    endcomp;
run;
```

#### prints:

Country	Region	PREDICT	ACTUAL	ratio
CANADA	EAST	1,982.00	1,887.00	0.95
	- WESI	912.00	1,758.00	1.95
CANADA		2,894.00	3,645.00	1.26
GERMANY	EAST	1,810.00	1,592.00	0.88
	WEST	2,283.00	2,224.00	0.97
GERMANY	_	4,093.00	3,816.00	0.93
U.S.A.	EAST	1,387.00	2,092.00	1.51
	WEST	1,577.00	1,630.00	1.03
U.S.A.	_	2,964.00	3,722.00	1.26
		9,951.00	11,183.00	1.12

Notice something important here: the ratios are correct in the summary lines. SAS didn't just add up the ratios from the country/region summary lines – it knew to use the country/region summaries in the country/region ratio calculations, and the grand total summaries in the grand summary ratio calculation. SAS actually maintains four sets of numbers – for the detail lines, groups, and report, plus page totals - and chooses the correct one to use each time it executes the compute block.

#### **PRINTING A LINE**

The LINE statement lets your print a text string of your choosing. The line statement is similar in syntax to the PUT statement (warning – but not identical):

```
proc report data=smallprod nowindows missing headline;
    column country region predict actual ratio;
    define country--region / group;
    define ratio / computed format=6.2;
    rbreak after / summarize skip dol;
    compute ratio;
        ratio = actual.sum / predict.sum;
    endcomp;
    compute after country;
        cratio = actual.sum / predict.sum;
        line @10 'Country Ratio is '
            @28 cratio 6.2;
    endcomp;
```

#### run;

#### prints:

Countr	u Pogion	DDEDICT	λΟΤΙΛΙ	ratio
COUNCE	y Region	FREDICI	ACIUAL	Iatio
		1 002 00	1 0 0 7 0 0	0.05
CANADA	EASI	1,902.00	1,00/.00	0.95
	WEST	912.00	1 <b>,</b> 758.00	1.93
	Country Ratio is	1.26		
GERMAN	Y EAST	1,810.00	1,592.00	0.88
	WEST	2,283.00	2,224.00	0.97
	Country Ratio is	0.93		
U.S.A.	EAST	1,387.00	2,092.00	1.51
	WEST	1,577.00	1,630.00	1.03
	Country Ratio is	1.26		
		9,951.00	11,183.00	1.12

Warning: there are two big gotchas with the LINE statement. The first is that the LINE statement always executes, even if it's inside a false IF block. This means that you can't conditionally put out a blank line. You can, however, put the text you might want to print in a variable, and calculate the variable with an IF statement.

This doesn't do what you want:

```
compute after country;
  cratio = actual.sum / predict.sum;
  if ratio > 1 then
       line @10 'Country Ratio is '
          @28 cratio 6.2;
endcomp;
```

it prints:

Country	Region	PREDICT	ACTUAL	ratio
CANADA	EAST	1,982.00	1,887.00	0.95
	WEST	912.00	1,758.00	1.93
Cou	untry Ratio is	1.26		
GERMANY	EAST	1,810.00	1,592.00	0.88
	WEST	2,283.00	2,224.00	0.97
Cou	untry Ratio is	0.93		
U.S.A.	EAST	1,387.00	2,092.00	1.51
	WEST	1,577.00	1,630.00	1.03
Cou	untry Ratio is	1.26		
		9,951.00	11,183.00	1.12

This:

```
compute after country;
   cratio = actual.sum / predict.sum;
   if ratio > 1 then
        linetext = 'Country Ratio is ' || put(cratio, 6.2);
   else
        linetext = ' ';
   line @10 linetext $50.;
endcomp;
```

Countr	ry Region	PREDICT	ACTUAL	ratio
CANADA	EAST	1,982.00	1,887.00	0.95
	WEST Country Ratio is	912.00 1.26	1,758.00	1.93

GERMAN	Y EAST	1,810.00	1,592.00	0.88	
	WEST	2,283.00	2,224.00	0.97	
U.S.A.	EAST	1,387.00	2,092.00	1.51	
	WEST	1,577.00	1,630.00	1.03	
	Country Ratio is	1.26			
		9,951.00	11,183.00	1.12	

Much closer, but you still have an extra blank line.

The second gotcha is that you can't align LINE output with columns by name; there's no way to say "put this in the same horizontal location as the X variable". With monospace output, you can just count the columns, but there's no way to line up proportional font output.

I expect that both of these problems will be addressed in a future release of SAS.

### CONTROLLING APPEARANCE WITH CALL DEFINE

One of the big winning features of PROC REPORT is the cell-level control it gives you over output appearance through the Output Delivery System. Although it's possible to achieve the same level of control in data step reporting, it's much more complicated – if you can use PROC REPORT, whoever inherits your programs will thank you.

In addition to the static styles shown in an example above, PROC REPORT provides the CALL DEFINE statement, which lets you specify the appearance of individual rows and cells. In the example below, ratios below 1 are shown in red, and ratios outside a given range are in bold:

```
proc report data=smallprod nowindows missing headline;
    column country region predict actual ratio;
    define country--region / group;
    define ratio / computed format=6.2;
    break after country / summarize skip ol;
    rbreak after / summarize skip dol;
    compute ratio;
    ratio = actual.sum / predict.sum;
    if ratio < 1 then
        call define(_col_, 'style', 'style=[foreground=red]');
    if ratio < 0.9 or ratio > 1.1 then
        call define(_col_, 'style', 'style=[font_weight=bold]');
    endcomp;
run;
```

produces:

Country	Region	PREDICT	ACTUAL	ratio
CANADA	EAST	1,982.00	1,887.00	0.95
	WEST	912.00	1,758.00	1.93
CANADA		2,894.00	3,645.00	1.26
GERMANY	EAST	1,810.00	1,592.00	0.88
	WEST	2,283.00	2,224.00	0.97
GERMANY		4,093.00	3,816.00	0.93
U.S.A.	EAST	1,387.00	2,092.00	1.51
	WEST	1,577.00	1,630.00	1.03
U.S.A.		2,964.00	3,722.00	1.26
		9,951.00	11,183.00	1.12

You can also control the format of an entire row; this variation on the Observation Number code creates a grey background under every other row:

prints:

Country	Region	Product	Month	PREDICT
CANADA	EAST	BED	Jun	851.00
		DESK	Sep	452.00
		CHAIR	Mar	679.00
	WEST	TABLE	Dec	231.00
		CHAIR	Jun	98.00
		SOFA	Mar	583.00

<LINES DELETED>

### DYNAMICALLY CHANGING FORMATS

Someone on SAS-L wanted to know how to display a different number of decimal points for the same field on each line of a report; another variable contained the number of decimal points to display.

Here's some code to do that:

```
data test (keep=decimals value displayed);
   do i = 1 to 5;
      do decimals = 0 to 3;
         value = ranuni(95605) * 10;
         displayed = value;
         output;
      end;
   end;
   stop;
run;
proc report data=test nowindows missing;
   columns value decimals displayed;
   define _all_ / display;
   compute displayed;
      call define(_col_, 'format', '10.' || put(decimals, z1.0));
   endcomp;
run;
```

VATIE	DECTMATS	DICDIAVED	
VALUE	DECIMALS	DISPLATED	
3.4648784	0	3	
3.3165982	1	3.3	
2.0278367	2	2.03	
8.0749122	3	8.075	
8.1445687	0	8	
7.6102304	1	7.6	

5.2384895	2	5.24	
3.8716015	3	3.872	
5.5787562	0	6	
<lines deleted=""></lines>			

### ACKNOWLEDGMENTS

I would like to thank Sandy McNeill and Ray Pass for their contributions to my understanding of PROC REPORT, Lauren Haworth and Eric Gebhart for helping me understand ODS, and Richard deVenezia, Ian Whitlock, and the gang at SAS-L for helping me with base SAS in general, and special thanks to Bill Viergever.

### **CONTACT INFORMATION**

Your comments and questions are valued and encouraged. Contact the author at:

Jack Hamilton jfh@alumni.stanford.org: jack.hamiilton@kp.org http://www.excursive.com/sas/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.